Posts Tagged ‘custom’

155 Title turbo

With the CB160 project complete I find myself floating between universes with no clear direction. I have more of my own project ideas that I would like to pursue but also find myself in idle mode. There is never a shortage of tasks to complete for others and although I have got better at managing the “request” list I figured I would take on a quick and simple project.

The Porsche dealership in the city was in need of some tool room organization and they required some way to store some large equipment items. The dealership is required to purchase, and needs, certain special tools that are available from the manufacturer. One of these special tools includes multiple large metal engine table lift adapters. Basically they are comprised of metal channel configured to adapt to different models of Porsche engines. The cradles sit upon a hydraulic engine scissor lift table and allows for removal of power train units for various models Porsche produces.

The cradle adapters are big, bulky, heavy, and awkward to store and to move. The have leaned up against a wall for years and all the related adapters just get thrown in a pile. Since the dealership is moving into a brand new facility they didn’t what to transfer the “tool pile” into the new tool room. Some means to organize, store, and move the tooling was required.

155 Cayenne cradle

The cradles, and adapters, that require storage are used on top of an engine lift table. Here is a picture of a Cayenne engine and transmission sitting on the cradle that is perched on top of the lifting table. The adapter is the gold colored contraption. Porsche has multiple of these adapted including Panamera, Carrera GT, and Cayenne.

I had offered to weld up an A-frame style cart that would allow the larger cradles to hang. The idea would be to fabricate shelving for all the extra adapters. The only request on the dealerships part was that the cart was painted red. I basically was allowed to fabricate the cart any way I saw fit as long as it held all the necessary tooling.

So I lugged all the engine cradles and adapters home and started to measure and configure in order to come up with a plan. The engineering was far from complicated and the main focus was to make the entire unit as compact as possible.

It seems like it has been awhile since I have posted just some basic fabrication that I do in the shop. To some of you the pictures may be boring. For me I like seeing how others complete some of the most basic tasks and so this is what I have tried to show. It is cool how many different ways there are to go about accomplishing the same thing. The following shows you my way.

155 setting for circles

Setting up my plasma circle guide to do some radius cuts on 8″ mild steel. The radius gets set to 4 inches.

155 spittin sparks

I love watching sparks fly. Some people have a horsepower and torque addiction. For me it’s all about molten metal.

155 rough cur 8 inches

This is the top tray and support for the structure built from 8″ wide by 3/8″ thick mild steel. I wanted to give the tray come nice lines therefore curves are in order.

155 bending edges

The top tray support needs some sides in order to prevent stored hardware from getting away. The sides were bent from 2″ x .125″ flat bar.

155 clamped 4 welding

The flat bar sides were bent in two sections then clamped to the base and welded.

155 top tray

Here is the top tray support completed.

155 cut 2 length

With the top completed it was time to move onto the base. The stock was cut to size. The base was plasma cut out of 10 gauge and the perimeter is 2×4 steel tubing.

155 lower tray

Not a lot of fancy engineering going on here. The base is fairly basic. Just needed to be clamped in place and welded. The base measured 24″ x 60″.

155 caster spacing

I hate drilling for casters. It is boring and time consuming so I decided to make a jig to speed things up. I dialed in the caster bolt spacing into the milling machined DRO.

155 caster template

With the DRO programmed I drilled a template with my caster bolt spacing.

155 drilling 4 wheels

Now that I had a jig with perfect bolt hole spacing I was able to quickly drill all 4 corners of the base for fitting of the casters.

155 base done

Base complete. Nothing great to look at at but it’s functional.

155 clamping uprights

Time to connect the upper tray to the lower base. Lots of clamping and measuring before things got tack welded into place.

155 3D roughed

Here the upper and lower got final welded. Everything measured out square. The Germans would be proud of me.

155 test fit b4 continuing

Before going on I wanted to ensure the cradles would hang properly on the rack. Clearances worked out great.

155 pegs clear

The peg clearance wasn’t left to chance, I calculated it all out before welding on the hooks.

155 middle tray

Last tray to complete. I planned to put a middle tray in to allow for more storage. This one was built from 10 gauge and featured a similar design to the top tray.

155 middle tray test

Test fitting the middle tray before moving on. In this picture you can see the hooks I fabricated to allow for hanging of the engine cradles.

155 middle tray sides

Bending more sides for the middle tray.

155 midle sides tacked

Clamped and TIG welded.

155 fab complete

Completed support. All it needs now is some color.

155 underbelly red

I gave the option of sending out the rack for powder coating or I could just Tremclad it as a cheap option. They opted for Tremclad so although the finish prevents the final product from looking completely pro it was not in the budget. They requested red for visibility so the Fire Engine red got brushed on.

155 Fire Engine red

155 trays

155 Finished cart

153 Title bike

The momentum has not slowed and the finish is in sight. Reassembly of the CB160 continues to go strong and steady. It has taken me many years to learn how much time I need to budget for project completion. In the case of the 65Revive project I had already planned out a reassembly timeline back in September. I am please to say that I am on track and may even be slightly ahead of schedule. I am looking forward to the riding season and want to ensure that the bike is 100% complete before the spring melt off.

I last left off with a rolling chassis and an engine bolted in. Since that time I have been able to reach approximately 98% completion. I have already started fearing potential empty nest syndrome. Like previously posts I’ll take you through the process with pictures.

153 Hardware never ends

The powder coating seems to never end. I am hoping this is the last bit of hardware I need to coat, here the the final parts have been blasted. My objective was to NOT use one spec of spray bomb on the bike, I am pleased to announce I have succeeded.

153 More baking

Last bit of baking, this round ran me out of hanging wire.

153 Lic bracket

As much as no one wants to run a license plate it is required. I set up some 6061 aluminum on the mill and machined out a nice simple holder. Once complete it was powder coated matte black to blend it in.

153 Seat fitment

The lines of the bike are very crucial therefore fit and finish are a priority. I spent awhile building adjustments into the seat in order to allow it to sit perfectly with the rear frame hoop.

153 Hiding wires

One of the main build objectives was to hide all the wiring. In the case of the handle bars the wiring all got run inside. Holes were drilled and grommets installed to keep things clean.

153 Rat's nest

The factory wire harness was of no use to me. Almost every electrical component on the bike had been upgraded or moved. The entire wiring harness was built from scratch. I initially drew out a rough plan on paper but in the end I ended up building it as I went along. Many of the connectors were upgraded to weather pack connectors. All splices were soldered and wrapped with heat shrink.

153 Cleaned up

I am a big believer that even components that are not seen need to be clean and have the same attention to detail. The custom wiring harness cleaned up well in the end and everything tucked in beautifully.

153 Packed in

Here you can see everything I packed into under the fuel tank. Horn, coil, and a couple of relays.

153 New chain

I don’t know why I am posting this picture. Look everyone! I put a new chain on! Whooooopppppppeeee!

153 Bike tuning

With most of the bike complete I spent some time tuning the carbs and checking the timing. I set it up near the garage door and ran an exhaust hose out so I wouldn’t choke out on the fumes.

153 Carb sync

Was able to sync the carbs beautifully.

153 Base timing

Base ignition timing came in at 12 degrees, good enough for me.

153 Full advance

Full advance? 42 degrees! Nothing like getting a jump on that power stroke.

Below is video proof the the bike is alive. It starts great and runs. The custom exhaust and muffler sound good.

153 Cover swap

With tuning done and ignition timing confirmed I was able to swap out my timing cover for the NOS Honda stator cover.

153 Completed bike 23

From here on in it is basically a picture show. The bike is complete. There are a few details that need to be addressed but I need to wait until I can ride it before I can evaluate what needs to be done.

153 Completed bike 22

153 Completed bike 21

153 Completed bike 20

153 Completed bike 19

153 Completed bike 18

I opted to mount a super clean button in my steering stem that allows me to cycle through my instrument cluster menus.

153 Completed bike 17

153 Completed bike 16

153 Completed bike 15

153 Completed bike 14

Instead of using the factory starter button I chose to mount one next to the ignition switch. I turned the factory starter button, on the throttle housing, into my horn button. I like to think of it as my security system. If someone tries to start the bike they will end up sounding the horn instead of cranking the engine. Ha!

153 Completed bike 13

153 Completed bike 12

153 Completed bike 11

153 Completed bike 10

I spent forever obsessing about the rear brake switch. I wanted something clean. I finally came up with the idea of using the rear brake lever stop as the switch. I Machined some plastic bushings in order to insulate the stop. Then using a single ground wire and a 5 pin relay I was able to turn the stop into a switch. Worked great and is almost undetectable.

153 Completed bike 09

153 Completed bike 08

153 Completed bike 07

153 Completed bike 06

153 Completed bike 05

153 Completed bike 04

153 Completed bike 03

153 Completed bike 02

153 Completed bike 01

So the main work is complete and I need to turn my attention to getting this thing insured and registered. It is not that straight forward and I need to jump through hoops almost every step of the way. I have budgeted a month to deal with the paperwork and hope that things will work in my favor.

CB160 right side

152 Title piston

Every once and awhile I will cruise through my blog postings just to take stock of what I have posted in the past and therefore I am able to plan for the future. I am the sole editor of all my posts. I review the post before I publish it, I ensure all the links work, the pictures will blow up to full size, and the grammar and spelling are correct. The reason I am telling you this is because I can’t believe how many spelling mistakes I catch when reviewing my work once it has already been published. So in this posting I am offering up an apology in my obvious downfall as an editor. I will continue to try and improve however I suspect I will always miss a certain number of spelling and grammatical errors. I realize it probably does not bother most of you but it bugs me. There…I said it, let’s move on.

As my blog will show I have spent the majority of my garage time working on my 65revive project. There are still times when I fit in side projects and usually it is something that is functional and not worth posting. The other day I was in need of a thank you gift for a friend who helped me out with a few things so I thought I would build one. I wanted something cool but I wasn’t able to commit a weeks’ worth of time to the project. After some pondering I came up with an idea that allowed the task to be accomplished in an evening yet still have a bit of wow factor. The following pictures will run through the 4 hour build process of what turned out to be a thank you for much appreciated help.

152 BMW piston

Started out with an old BMW piston I had laying around.

152 Initial clean up

I performed an initial clean up on the lathe using 320 grit sandpaper and Scotchbite.

152 Starter hole

Next I moved onto the milling machine to center the piston out and drill a starter hole.

152 Milling slot

Next step was to mill out a slot large enough to hold a stack of business cards. I milled just far enough to allow the pin bosses to act as some internal card support.

152 Trimming base

I needed to build a base in order to seal the bottom off that way if the card holder is picked up the cards won’t fall out the bottom. I rough cut a circle out of .375″ plate 6061 aluminum using the plasma torch.

152 Machined to fit

With the disc rough cut I was able to machine it down to final dimensions on the lathe.I made it to be a press fit into the piston base.

152 Bottom blasted

With all the “construction” completed it was time to move onto the finsihing phase. Here the top of the piston got taped off and the bottom half was glass bead blasted.

152 Top polished

Now the bottom section gets taped and the top half gets a 3 stage polishing.

152 Powder coated

It was time to now fog the bottom with matte black powder coating and slide it into the oven for a 15 minute heat soak at 375 degrees.

152 Completed holder

Finished product. It’s not a work of art but it is functional and kind of cool.

151 Title speedo drive

I figured it was time to post some garage updates. Things have not slowed down and the garage continues to be just as active as it has always been. So busy that it is hard to put down the tools in order to update the blog. Well today is the day that I was able to upload a pile-o-pics to show what kind of work has been taking place on the 1965 Honda CB160 rebuild.

The last update showed that the bike finally got torn down and the fabricating continued to take place. Eventually it got to the point where I had to direct my attention to the bodywork and painting. Both things that I do not have a high level of confidence in performing. However I have no choice. My goal is to prove to myself that a decent bike can be built all within the confines of my 4 garage walls. So I trek on and tackle the aspects that require a certain amount of learning on my part.

I finally was able to paint all the components. I spent an entire weekend setting up my collapsible paint booth and spraying everything that required paint. It was a huge step that I completed and which also got me 1 step closer to the reassembly phase.

So I have posted the pictures and provided captions to help show what I have been up to over the past couple of months. Things continue to move along and progress is smooth. Enjoy the show.

151 Lower triple mod

The lower triple initially had the steering lock tumbler mount cast into it. My original plan was to keep the steering lock however the tumbler was to far gone to save therefore I opted to remove all evidence that it ever existed. I cut and ground the casting off on in the center of the triple. In order to mount my aftermarket steering stabilizer I needs to mill a flat surface on the triple for the stablizer bushing to mount flush on. My mill chuck was to big to get the job done so I used the drill press to clean up the surface.

151 Triple thread repair

The stabilizer mounting threads were stripped out so I ended up performing a thread repair. Years ago I got onto Time-Sert kits and have fallen in love with them. I will never go back to a Helicoil again.

151 Speedo drive adapter

In a previous posting I outlined how I was going to use a GPS based speedo signal. Part of the reason for doing so was to eliminate the front speedo drive cable. With no cable I no longer need the speedo drive which mounts onto the front axle. Since the drive also acts as a spacer I needed to machine a new spaacer to take its place. I could have made a fairly plain, yet functional, drive fairly quickly however I wanted to give the new component some good looks. I opted to machine a rounded, concave, cosmetic groove into it using my rotary table and my mill.

151 Finished initial cut

A pile of shredded aluminum was what I was left with once I was content with the groove depth.

151 Finishing speedo on lathe

The remainder of the adapter was finished up on the lathe.

151 Completed speedo adapter

On the left is the original speedo drive and on the right is the freshly machined spacer intended for taking the drives place. Still needs powder coating.

151 Throttle housing 5mm thread

Back in the sixties Honda built there bikes using a JIS (Japanese Industrial Standard) thread pitch for all of their bolts. Some of the thread pitches were different then what eventually became an industry standard years later. The 5mm bolt is one of the threads that changed. Since I updated many of the fasteners on the bike I opted to update the thread pitches as well. I installed a couple of industry standard 5mm Time-Serts in the throttle housing so that I could now use readily available SS socket head bolts.

151 Frame blasted

So with much of the fabrication work completed it was time to shift my focus to paint. The frame mods had all been done and therefore it was time to start the paint prep work. As much as I like to keep all my work “in-house” I opted to send the frame out for blasting. The simple fact is that I could not fit the frame in my blast cabinet and I was not about to blast it outside as the mess is not worth it. The company that performed the blasting did a great job.

151 Fiberglass prep

Bodywork is not one of my strong points however it was not going to happen on its own so I just sucked it up and did it. Once I got into it the progress clipped along at a good pace. The aftermarket fiberglass components purchased from Glass From The Past were in good shape. There were some minor pinholes that required touch up using glazing putty.

151 Centering front fender

I had forgotten to trim the fender mounting holes prior to tearing the bike down. I was forced to temporarily rebuild the front end in order to trim the fender up to ensure it would be centered on the front wheel.

151 Prepped for paint

Here are all the components (minus the frame) that are going to recieve the paint. All ready to go into the paint booth.

151 Liquid supplies

I am shooting 2 colors. Some of the components will be getting sprayed with Hot Rod flat black and the tank and seat pan will get some color put on them.

151 Primer shot

With the primer coat applied I was able to confirm the fibergalss parts were in very good shape.

151 Fixing pinholes

I had missed a few pinholes on the seat pan during my initial prep. Since the pan is such a huge player in the look of the bike I opted to touch things up and respray the primer before it went in for the base coat.

151 Frame flat black

Here is the frame and front fender hanging in the paint booth with a fresh coat of flat black applied. No runs!

151 Retro brown

The retro brown color was mixed up and the tank and seat pan were about to come alive.

151 Brown seat

The brown sprayed on great. Each component got three coats of top coat. The plan is not to apply a clear coat as the vintage/retro look is what I am going for.

151 Brown tank

The lighting in the paint booth is great for painting but not so good for photography. At least you can see the results of the sprayed tank.

151 Brown cowl

I am very happy with the seat cowl, it looks like glass.

151 Painted matte black

After a weekend of work I was able to get all my components painted. Here are all the flat black components. I will post more on the colored parts later.

151 Powder coat pile

With the painting complete I still had to make a few more powder coating runs. Here is yet another pile of components getting coated.

151 Swing arm getting powder

I opted to powder coat the swing arm instead of painting it. Powder coating is so much more durable. I was intially concerned that my flat black powder coat may be a slightly different shade then the Hot Rod flat black sprayed onto the frame. It turns out the colors are incredibly close to the point were you can’t see a difference.

151 Powder coating hardware

Some parts fogged with powder prior to baking.

151 Powder coated pile

Here is one pile of completed poweder coated parts.

151 New balls

With 90% of the refinishing complete there was nothing left to do but reassemble. The steering head recieved all new, OEM Honda, inner/outer races and ball bearings.

151 New rear sprocket

The rear wheel recieved a new 38 tooth aluminum sprocket from Sprocket Specialists.

151 Swing arm install

Swing arm installed.

151 Rear sets installed

Rear sets installed.

151 Rear detail

Rear wheel and rear suspension in.

151 Rear end supported

Finally got the bike to stand on one leg.

151 Ready for an engine

Front end is installed and now the bike waits for the engine (sitting on the bench). I had previously fabricated a different kick stand which bolts to the lower engine case therefore the bike won’t have a “third leg” until the engine is in.

151 Taking shape

With the help of a couple of friends we were able to slide the engine in place creating no damage in the process.

151 Engine installed

So here it is, progress keeps going. I continue to go full steam ahead. I will try and not wait so long to get the next installment of the 65Revive project posted. Stay tuned.

Title bike shop

It has been awhile since I have posted the progress made on the 65 Revive CB160 cafe racer build. Things have not slowed down and lots of fab worked has taken place. It’s a slow, but enjoyable, process and much time has been spent staring at all the angles and mentally engineering the game plan.

Up to this point I had the exhaust under control and it was time to turn my attention to the seat. I was dreading this section simply because there were many factors to consider and everything needed to tie in together. After much work I am happy to say that it appears to all be coming together. I am retrofitting a fibreglass solo seat to the bike. The rear frame hoop was going to need to be build and then all the electrical components would have to get hidden under the seat.

I’ll run you through the details using the following pictures. Much of the fab work never got photographed this time round simply because I was concentrating more on the job at hand then the blog. Anyway…the following gives you the highlights.

Starting mess

This is what I am starting with. Here is what the CB160 looks like, bone stock, under the seat. I planning to cram a lot into this space.

Tank mount has 2 go

The fuel tank mount is going to interfere with the seat placement. In order to maintain the look of the bike the seat has no choice but to tuck up clean to the tank. This means the factory tank mount will need to be relocated.

180 hoop

As I have collected parts for the CB160 I added an 180 degree seat hoop onto one of my orders. I wasn’t sure if I would use it so I decided to trim off the rear frame tabs and tack it into place to get a visual.

180 not working

I think it is fairly evident from this shot that the seat hoop will NOT work. I kinda figured so since the seat lines didn’t appear to be even close to the hoop lines.

Rear hoop template

Looks like I am going to have to try and build a seat hoop to fit. The plan is to bend a section of 7/8 pipe to match the shape of the seat. I needed to build a steel jig to wrap the steel around. I started by building a template of the seat hoop out of 1/8″ MDF

Baking sand

The seat pipe, that would need to be heated and ben,t was going to have to wrap around a fairly tight radius. The idea was to fill the pipe with sand first in order to prevent the pipe walls from collapsing during the bending. Since the pipe would be sealed during the heating process I wanted to ensure I had no moisture in the fill sand. I used some old baking sheets and heated all the moisture out of the sand using my powder coating oven.

Fillling seat hoop

I used a 7 foot section of thin wall 7/8 tubing and welded one end shut. I then filled the tube full using the dry sand.

Compressing sand

The other end of the tube got a 3/4″ nut welded to it. I then used a 3/4″ bolt and threaded it into the tube to compress the sand solid.

Clamped 4 bending

Here is what the bending jig looked like before I put the heat to it. You can see the steel template I built to resemble the shape of the seat. I cut it out of scrap 3/8″ steel plate using the previously built MDF template as a guide. The steel then got tack welded to the bench and angle iron was clamped in place to help hold the steel tube in proper location. The next step was all about the heat. using a oxy-acetylene torch I was able to get the pipe to bend like butter.

Bent hoop

And here you have it, the results of my bend attempt.

Nice!

The hoop worked out fantastic. The wall collapsed ever so slightly however it will absolutely not be a factor. I was more then impressed with how well the whole procedure turned out.

Plugs and hoop

I trimmed the seat hoop up to proper length and then built some solid steel frame plugs to help secure the hoop to the factory frame rails.

Plugs mocked

Frame plugs in place and ready for the hoop.

Hoop welded

The hoop was TIG welded into place and the frame ground down smooth.

Hoop fit 1

I am fairly critical of my work but in this case I would say the fit is near perfect. The lines of the seat fit beautifully along the new frame hoop.

Hoop fit 2

Another picture showing the fitment of the seat to the hoop.

Rock guard trimming

I had bought a rear rock guard to help keep road debris away from the engine. Before I could build the seat pan the fiberglass rock guard required some trimming in order to allow for pan placement.

Seat pan shape

First step in building the seat pan was to create an initial template using a cereal box.

Seat pan template

Once I had my cereal box template I then cut out a plasma guide template from 1/8″ MDF. Here the template is clamped to the seat pan steel and ready to get plasma cut.

Seat pan bend

Some minor bending on the press gave it the right angle to allow it to snuggle into the frame rails.

Seat pan test fit

The seat pan fitment worked out great. Eventually it will get welded all the way around the frame however more fab work is needed first.

Power distribution mounts

This next picture may not look like much but the work actually took many hours. Much of the bikes life line systems need to be hidden from sight therefore mounting options are limited. Most of the systems will be hidden under the seat. It took hours of staring and planning to come up with a mounting sequence that would work. Even ended up doing multiple “re-do’s”

Power distribution mock up 1

And here is the gist of it mocked up. The components that are now mounted under the seat include the battery, starter solenoid, fuse panel, power supply relay, license plate lights, charging regulator, ignition module, seat mounting posts, and wire management studs. It fits!

Power distribution mock up 2

Here is another angle of the set up. You can se the 4 aluminum posts that support my seat. The posts thread onto 8mm studs and therefore I am able to unscrew them and machine them down on the lathe in order to allow for precise seat fitment.

Power distribution mock up 3

I bought a lithium battery for the bike which allows me to mount it any way I want. Here you can see the power hook ups I built out of aluminum. To the left is the one side of my 2 piece custom license plate light I machined out of aluminum. In a few more pictures you will see what the light looks like from the exposed side.

Seat knob 1

I wanted to ensure I could remove the seat without any tools so I machined this knob out of some scrap I had. It is weighted very nicely to allow for quick spinning on and off.

Lic light and plate mount

Here is the rear underside of the seat pan. The license plate light housing will eventually get powder coated black. The tab to the right of the light is my license plate bracket holder.

Seat support

This is what the underside of the seat looks like. I built steel plates to fit precisely on top of my aluminum posts. The center section is my seat hold down.

Seat fit 1

Here’s an overall view of the rear tail section showing the fitment of the seat to the frame rails, the installed brake light and how the license light and license bracket is tucked up underneath. Super clean.

Seat knob 2

The seat hold down knob sits in the center section and does not protrude below the frame rails therefore is hides out of sight but is still very accessible.

Seat lines

Final shot with the seat mounted, adjusted, and secured with my power distribution hidden away. It was a long process however highly successful.

Title vase

Being the start of summer holidays my wife and daughter were getting set to head out of town to visit some family. I am staying behind since work is very busy this time of year and therefore vacation time for me will have to wait. As they were doing their final packing in order to be ready to leave early next morning I skipped (literally) out into the garage and decided to whip off a quick build of a host(ess) gift for them to take.

I had no preconceived ideas, or plans, so I just wandered for a bit to see what nothings I could turn into somethings. A couple years back I acquired about 200 feet of aluminum flag poles from a business that was getting rid up them. I have no use for this much tubing but it was good, clean, heavy wall aluminum for free, how could anyone possibly say no? So I figured I would dip into the stash and steal 10 inches worth, funny how that didn’t really seem to put a dent in the pile.

My plan was to build a custom aluminum cylinder style flower vase to accommodate a few fresh cut flowers. The interesting part of the vase was not going to be the design but instead the finish technique. I had come up with, and performed, the technique once before in the past and it worked well so I thought I would repeat it on a flower vase. As usual I’ve turned the post into a picture book so find your comfy spot and let’s begin.

Vase base cut

The “flag pole” vase was going to need a base. I had a crushed chunk of 2.75″ aluminum that had enough meat on it that I could machine it down to a useable dimension. I love building stuff out of junk material.

Vase base machined

Here the base is half done on the lathe. Just need to flip it around and clean up the other side.

Flag pole clean up

Here is the section of flag pole that is getting the end chamfered in order to weld the base on. Normally I use a steady rest when machining something this long however my rest was about .250″ too small for the pipe. The machining was not required to be precise and therefore hanging it off the chuck worked fine.

Vase ready 4 welding

Here is the base is mated to the cylinder and is ready for welding.

Welded base and body machined

With the base welded in place the vase got remounted into the lathe and the weld, and cylinder, were all machined down clean.

Vase 3 stage polish

Next it was onto the buffing wheel where it got put through the black, brown, green stages of buffing.

Finishing 1st step

With the vase all polished up it was time to start implementing the finishing technique.

Finishing 2nd step

Next step involves using a quality automotive flexible vinyl fineline 1/4″ tape. I apply a pattern to the body of the vase making sure I finish were I started. I then use a different vinyl tape to seal the top and bottom. It is important to trim the top and bottom tape with a sharp knife in order to get a clean, crisp, edge.

Finishing 3rd step

3rd phase involves about 1 minute in the glass bead blast cabinet where the exposed polished sections of the vase get pummeled.

Finishing 4th step

Nothing left to do now except strip the tape off and clean it up. I probably should have water tested after the machining phase just in case however I am happy to say I tested after it was all finished and it does hold water.

Vase rim

I kept the rim polished.

Vase body

Whole project took about 1 and a half hours and involved no out-of-pocket expenses. Just enough time left to slip it into the suitcase.

Title mirror

So I continue to work my way through the FJR1300 Gen III retrofit project. Previously I was able to machine the name plate and LED light holder that would eventually get mounted to the back of the Pelican case. Next it was onto building a Pelican Case mount as well as try and come up with some way of mounting a couple of Clearwater LED driving lights.

I continue to strive for professional looking results and when mounting accessories to the bike it is important to blend the mounts in with the flow of the bikes lines. Nothing looks worse then something that simply doesn’t appear to belong. Subtle and discrete is usually a good thing and the less flashy and obtrusive I make it I think the better it will look.

So as my dad and I search for a place to mount the front auxiliary LED lights to it soon becomes evident that there are not too many options, at least none that would look good. Finally settled on trying to fabricate a couple of brackets that will get sandwiched between the base of the mirror mounts and the fairing. After much looking and measuring it would appear that the odds may work in my favor. Although I wasn’t convinced the plan would come together in the end there was enough evidence presented that would suggest the efforts verses the failure ratio was one worth pursuing.

So the bike was hauled into my garage and the fabricating began. I had a basic idea of what I wanted to accomplish however the aspect that complicated it all was I was working with 3 odd ball X Y, Z, angles. The angle of the mirror mount was situated in such a way that I needed to compensate for the angles and build a bracket that would eventually be square, plumb, and level.

I stock old cereal boxes in my garage because the cardboard is good for building templates from. So I began by building a cardboard sample of the LED light bracket in order to help determine the angles that would be required. Once I mocked up the cardboard I switched over to a scrap piece of steel and build a crude mount to ensure my efforts would not be wasted. Once I determined the proper angles I began building to good brackets.

As far as the mounting of the Pelican case I simple machined some spacers to fit in place of the existing factory rack hold down hardware locations. I cut the spacers at an angle to ensure that the mounting of the case would remain parallel with the back rack.

Once everything was fabricated the complete works got a glass bead blasting and then everything was fogged with some matte black powder coating. In the end I think the completed project worked out well. The front lights look super clean and super factory looking. The matte black finishing blends everything into the bike and prevents things from standing out as thought they don’t belong. My dad is happy and has since taken back possession of his bike and has everything wired up and working. He put his first 100km on his new bike today and was happy to report that everything is working 100%. On with the pictures…

Cheat arbor

I built a cheater arbor to help speed up the set up when needing to mill a radius. The arbor is a chunk of cold rolled round bar with the same radius as I require. I center the rotary table to the mill head and then clamp down my work piece once I have my arbor lined up. It isn’t highly accurate but I would guess that I am within .010″.

Bracket radius

Here are the results of my laziness. The radiusing of the mirror spaces work out great. They were cut from 1″ x .250″ 6061 aluminum.

6061 Mirror spacers

Here are my roughed out mirror base spacers. The black base gasket shows some resemblance, this is good.

Bracket taking shape

This is one of my good LED light mount brackets starting to take shape. I scribe my bend angles with a cut off wheel. This way I get a super clean inside bend line and it allows me to weld the exposed cut on the outside of the bend and clean it up. It not only adds strength but also looks ultra pro.

Bracket leveling

Much time was spend mocking up the brackets to ensure that my X,Y, and Z coordinates were all on even planes. Here I got within .50 degrees of level.

Perpendicular measurement

The lights will be adjustable vertically but not horizontally therefore the brackets need to be fabbed accurately. I used a couple of squraes and a staright edge to help determine what the “straight ahead” position.

Cutting vert adjusters

Before I performed the final bend on the brackets I milled out the adjustment slots to allow for vertical adjustment of the LED lights.

Bracket basics

Here sit all the LED light components minus the final bend, and trimming, of the brackets.

Bending bracket angles

Final bends. All that remains is welding and grinding of the scribe lines.

Wire channel test

In order to make the bracket look super clean I needed to be able to hide the wiring. I milled a channel into the base spacer plates and the drilled a hole in order to feed the LED wiring in under the mirror assemblies.

Brackets and spacers blasted

So here you have it, all the fabricated components glass bead blasted and ready for powder coating. I never posted pics of the Pelican case spacers however it is fairly obvious that I spun them up on the lather out of aluminum.

1st batch coated

First batch of matte black powder coated components.

Plate epoxy

With the Pelican case plate coated I was able to epoxy on the “Iron Butt” name plates.

Pelican case spacers

Here the Pelican Case spacers are installed on the rear of the FJR’s rack.

Pelican case support

A side shot of the mounted Pelican Case shows how the angled spacers allow the case to run parallel with the factory rack. Looks clean.

Completed Butt plate 4

The case gets bolted to the spacers from the inside. In order to accomodate the parallel fit some angled washers were machined.

Completed Butt plate 3

This is the inside shot of the mounted name plate. The 2 center studs were machined out to allow for hiding of the LED wires.

Completed Butt plate 1

Light bracket 1

Light bracket 3

This shows the routing of the wires in behind the mirror base. There is still a plastic fairing cover the dash assembly.

Light bracket 2

Tucking the wiring of the lights in under the mirror mounts worked great.

Mounted lights

Completed Butt plate 2