Posts Tagged ‘motorcycle’

153 Title bike

The momentum has not slowed and the finish is in sight. Reassembly of the CB160 continues to go strong and steady. It has taken me many years to learn how much time I need to budget for project completion. In the case of the 65Revive project I had already planned out a reassembly timeline back in September. I am please to say that I am on track and may even be slightly ahead of schedule. I am looking forward to the riding season and want to ensure that the bike is 100% complete before the spring melt off.

I last left off with a rolling chassis and an engine bolted in. Since that time I have been able to reach approximately 98% completion. I have already started fearing potential empty nest syndrome. Like previously posts I’ll take you through the process with pictures.

153 Hardware never ends

The powder coating seems to never end. I am hoping this is the last bit of hardware I need to coat, here the the final parts have been blasted. My objective was to NOT use one spec of spray bomb on the bike, I am pleased to announce I have succeeded.

153 More baking

Last bit of baking, this round ran me out of hanging wire.

153 Lic bracket

As much as no one wants to run a license plate it is required. I set up some 6061 aluminum on the mill and machined out a nice simple holder. Once complete it was powder coated matte black to blend it in.

153 Seat fitment

The lines of the bike are very crucial therefore fit and finish are a priority. I spent awhile building adjustments into the seat in order to allow it to sit perfectly with the rear frame hoop.

153 Hiding wires

One of the main build objectives was to hide all the wiring. In the case of the handle bars the wiring all got run inside. Holes were drilled and grommets installed to keep things clean.

153 Rat's nest

The factory wire harness was of no use to me. Almost every electrical component on the bike had been upgraded or moved. The entire wiring harness was built from scratch. I initially drew out a rough plan on paper but in the end I ended up building it as I went along. Many of the connectors were upgraded to weather pack connectors. All splices were soldered and wrapped with heat shrink.

153 Cleaned up

I am a big believer that even components that are not seen need to be clean and have the same attention to detail. The custom wiring harness cleaned up well in the end and everything tucked in beautifully.

153 Packed in

Here you can see everything I packed into under the fuel tank. Horn, coil, and a couple of relays.

153 New chain

I don’t know why I am posting this picture. Look everyone! I put a new chain on! Whooooopppppppeeee!

153 Bike tuning

With most of the bike complete I spent some time tuning the carbs and checking the timing. I set it up near the garage door and ran an exhaust hose out so I wouldn’t choke out on the fumes.

153 Carb sync

Was able to sync the carbs beautifully.

153 Base timing

Base ignition timing came in at 12 degrees, good enough for me.

153 Full advance

Full advance? 42 degrees! Nothing like getting a jump on that power stroke.

Below is video proof the the bike is alive. It starts great and runs. The custom exhaust and muffler sound good.

153 Cover swap

With tuning done and ignition timing confirmed I was able to swap out my timing cover for the NOS Honda stator cover.

153 Completed bike 23

From here on in it is basically a picture show. The bike is complete. There are a few details that need to be addressed but I need to wait until I can ride it before I can evaluate what needs to be done.

153 Completed bike 22

153 Completed bike 21

153 Completed bike 20

153 Completed bike 19

153 Completed bike 18

I opted to mount a super clean button in my steering stem that allows me to cycle through my instrument cluster menus.

153 Completed bike 17

153 Completed bike 16

153 Completed bike 15

153 Completed bike 14

Instead of using the factory starter button I chose to mount one next to the ignition switch. I turned the factory starter button, on the throttle housing, into my horn button. I like to think of it as my security system. If someone tries to start the bike they will end up sounding the horn instead of cranking the engine. Ha!

153 Completed bike 13

153 Completed bike 12

153 Completed bike 11

153 Completed bike 10

I spent forever obsessing about the rear brake switch. I wanted something clean. I finally came up with the idea of using the rear brake lever stop as the switch. I Machined some plastic bushings in order to insulate the stop. Then using a single ground wire and a 5 pin relay I was able to turn the stop into a switch. Worked great and is almost undetectable.

153 Completed bike 09

153 Completed bike 08

153 Completed bike 07

153 Completed bike 06

153 Completed bike 05

153 Completed bike 04

153 Completed bike 03

153 Completed bike 02

153 Completed bike 01

So the main work is complete and I need to turn my attention to getting this thing insured and registered. It is not that straight forward and I need to jump through hoops almost every step of the way. I have budgeted a month to deal with the paperwork and hope that things will work in my favor.

CB160 right side

Advertisements

151 Title speedo drive

I figured it was time to post some garage updates. Things have not slowed down and the garage continues to be just as active as it has always been. So busy that it is hard to put down the tools in order to update the blog. Well today is the day that I was able to upload a pile-o-pics to show what kind of work has been taking place on the 1965 Honda CB160 rebuild.

The last update showed that the bike finally got torn down and the fabricating continued to take place. Eventually it got to the point where I had to direct my attention to the bodywork and painting. Both things that I do not have a high level of confidence in performing. However I have no choice. My goal is to prove to myself that a decent bike can be built all within the confines of my 4 garage walls. So I trek on and tackle the aspects that require a certain amount of learning on my part.

I finally was able to paint all the components. I spent an entire weekend setting up my collapsible paint booth and spraying everything that required paint. It was a huge step that I completed and which also got me 1 step closer to the reassembly phase.

So I have posted the pictures and provided captions to help show what I have been up to over the past couple of months. Things continue to move along and progress is smooth. Enjoy the show.

151 Lower triple mod

The lower triple initially had the steering lock tumbler mount cast into it. My original plan was to keep the steering lock however the tumbler was to far gone to save therefore I opted to remove all evidence that it ever existed. I cut and ground the casting off on in the center of the triple. In order to mount my aftermarket steering stabilizer I needs to mill a flat surface on the triple for the stablizer bushing to mount flush on. My mill chuck was to big to get the job done so I used the drill press to clean up the surface.

151 Triple thread repair

The stabilizer mounting threads were stripped out so I ended up performing a thread repair. Years ago I got onto Time-Sert kits and have fallen in love with them. I will never go back to a Helicoil again.

151 Speedo drive adapter

In a previous posting I outlined how I was going to use a GPS based speedo signal. Part of the reason for doing so was to eliminate the front speedo drive cable. With no cable I no longer need the speedo drive which mounts onto the front axle. Since the drive also acts as a spacer I needed to machine a new spaacer to take its place. I could have made a fairly plain, yet functional, drive fairly quickly however I wanted to give the new component some good looks. I opted to machine a rounded, concave, cosmetic groove into it using my rotary table and my mill.

151 Finished initial cut

A pile of shredded aluminum was what I was left with once I was content with the groove depth.

151 Finishing speedo on lathe

The remainder of the adapter was finished up on the lathe.

151 Completed speedo adapter

On the left is the original speedo drive and on the right is the freshly machined spacer intended for taking the drives place. Still needs powder coating.

151 Throttle housing 5mm thread

Back in the sixties Honda built there bikes using a JIS (Japanese Industrial Standard) thread pitch for all of their bolts. Some of the thread pitches were different then what eventually became an industry standard years later. The 5mm bolt is one of the threads that changed. Since I updated many of the fasteners on the bike I opted to update the thread pitches as well. I installed a couple of industry standard 5mm Time-Serts in the throttle housing so that I could now use readily available SS socket head bolts.

151 Frame blasted

So with much of the fabrication work completed it was time to shift my focus to paint. The frame mods had all been done and therefore it was time to start the paint prep work. As much as I like to keep all my work “in-house” I opted to send the frame out for blasting. The simple fact is that I could not fit the frame in my blast cabinet and I was not about to blast it outside as the mess is not worth it. The company that performed the blasting did a great job.

151 Fiberglass prep

Bodywork is not one of my strong points however it was not going to happen on its own so I just sucked it up and did it. Once I got into it the progress clipped along at a good pace. The aftermarket fiberglass components purchased from Glass From The Past were in good shape. There were some minor pinholes that required touch up using glazing putty.

151 Centering front fender

I had forgotten to trim the fender mounting holes prior to tearing the bike down. I was forced to temporarily rebuild the front end in order to trim the fender up to ensure it would be centered on the front wheel.

151 Prepped for paint

Here are all the components (minus the frame) that are going to recieve the paint. All ready to go into the paint booth.

151 Liquid supplies

I am shooting 2 colors. Some of the components will be getting sprayed with Hot Rod flat black and the tank and seat pan will get some color put on them.

151 Primer shot

With the primer coat applied I was able to confirm the fibergalss parts were in very good shape.

151 Fixing pinholes

I had missed a few pinholes on the seat pan during my initial prep. Since the pan is such a huge player in the look of the bike I opted to touch things up and respray the primer before it went in for the base coat.

151 Frame flat black

Here is the frame and front fender hanging in the paint booth with a fresh coat of flat black applied. No runs!

151 Retro brown

The retro brown color was mixed up and the tank and seat pan were about to come alive.

151 Brown seat

The brown sprayed on great. Each component got three coats of top coat. The plan is not to apply a clear coat as the vintage/retro look is what I am going for.

151 Brown tank

The lighting in the paint booth is great for painting but not so good for photography. At least you can see the results of the sprayed tank.

151 Brown cowl

I am very happy with the seat cowl, it looks like glass.

151 Painted matte black

After a weekend of work I was able to get all my components painted. Here are all the flat black components. I will post more on the colored parts later.

151 Powder coat pile

With the painting complete I still had to make a few more powder coating runs. Here is yet another pile of components getting coated.

151 Swing arm getting powder

I opted to powder coat the swing arm instead of painting it. Powder coating is so much more durable. I was intially concerned that my flat black powder coat may be a slightly different shade then the Hot Rod flat black sprayed onto the frame. It turns out the colors are incredibly close to the point were you can’t see a difference.

151 Powder coating hardware

Some parts fogged with powder prior to baking.

151 Powder coated pile

Here is one pile of completed poweder coated parts.

151 New balls

With 90% of the refinishing complete there was nothing left to do but reassemble. The steering head recieved all new, OEM Honda, inner/outer races and ball bearings.

151 New rear sprocket

The rear wheel recieved a new 38 tooth aluminum sprocket from Sprocket Specialists.

151 Swing arm install

Swing arm installed.

151 Rear sets installed

Rear sets installed.

151 Rear detail

Rear wheel and rear suspension in.

151 Rear end supported

Finally got the bike to stand on one leg.

151 Ready for an engine

Front end is installed and now the bike waits for the engine (sitting on the bench). I had previously fabricated a different kick stand which bolts to the lower engine case therefore the bike won’t have a “third leg” until the engine is in.

151 Taking shape

With the help of a couple of friends we were able to slide the engine in place creating no damage in the process.

151 Engine installed

So here it is, progress keeps going. I continue to go full steam ahead. I will try and not wait so long to get the next installment of the 65Revive project posted. Stay tuned.

Title frame

I continue to struggle keeping up with the blog posts. The work in the garage has not slowed down however writing about it has. Work and family life is busy and something had to give. I was, however, able to find some time to put together a post outlining what has been going on lately.

The work on the CB160 Cafe Racer continues to take place. My goal is to have it completed by spring and therefore progress needs to continually take place. I think I will be in good shape to make my deadline however there is always more work involved then one may expect. No time to start slacking.

My plan from the beginning was to perform as much of the fabrication work as possible while the bike was still in one piece. Once I went as far as I could I would then strip the entire thing apart and start the refinishing, and rebuilding, process. Well this time has come; I have come to the point where all the finishing needs to take place therefore the bike has to come apart.

Although the following pictures leave out a lot of detail they will at least provide the highlights of what has been going on in the garage. So I invite you to scroll through the following pictures and bring yourself up to speed.

Brake linkage

I am really going for the minimalistic look on the bike so stripping everything off that isn’t required is a priority. If I could get every cable off the bike I would however I have to stay realistic. I had already machined and tack welded a new rear brake cable support onto the frame (top right corner) however after rethinking things I decided to try for mechanical linkage for rear brake actuation. You can see my mocked up linkage from my rear sets to the rear drum. The pedal feel is much better and the linkage really cleans up the look. I will have to wait till the bike is at reassembly stage in order to figure out exact linkage length since chain adjustment will come into factor.

B4 disassembly

So here you have it. I think I have done as much fabricating as possible with the bike assembled. At this point the entire thing gets stripped down. Everything will then start to get prepped and refinished before reassembly will begin.

Under tank electrical

Something I never blogged about was the under tank electrical. The original horn and coil has been done away with and I added a new Dyna Coil with new mounting. The horn has been replaced with a high pitch one off a Porsche Cayenne and then I added a couple of relays to handle some of the new electrical.

Central electrical

The central electronics have all been moved, and hidden, under the seat. Components include the electronic ignition module, charging system “regulator”, power supply relay, fuse block, starter solenoid, and battery.

Tear down

Time to start tearing things apart. Strapping the bike to a saw horse provided enough stability in order to get the wheels and suspension off.

Torn down

So here it is, the bare frame. Not a single nut, bolt, or clip is left on it. Time to start laying down some final welds and clean up some existing ones.

Organized components

All removed components were separated into indivduals bins to help keep things organized. A bin for powder coating, a bin for chroming, an electrical bin, and then a misc. bin.

Prepped 4 chrome

I am not a huge fan of lots of chrome however since one of the distinctive features of the bike include the factory chrome tank covers I felt it was necessary to bring some chrome highlights into the bike. I chose some hardware, brake linkages, axles, and fork seal housings to join the tank covers in their display of bling. I had a local electroplating company strip the old chrome first. I then performed some touch up on all the parts and sanded out any rough casting marks. Once prepped the components were sent back to the electroplaters.

Completed chrome

Here are the freshly chromed bike components. If you look at everything to the right of the tank covers you will see that there is not a lot of chrome on the bike, just enough to help blend the tank covers in with the whole package.

Tank covers chrome

The tank covers turned out fantastic!

Original fuel cap

The fuel cap is stainless steel so I opted to polish it up myself. Here is the before shot.

Polished fuel cap

And here is the after shot and the results of 3 stage polishing.

Fuel cap rebuild

The tank cap is pressed together but I was able to “blow” it apart using compressed air. I then was able to clean all the old varnish and rust from the internal components. I was successful in pressing it all back together.

Fork rebuild

Something that had been weighing heavy on my mind was the front fork rebuild. I was unsure if they would come apart easily and I suspected I may have seal issues. Turned out getting them apart was a bit of a challenge. I needed to machine a tool in order to spin off the fork seal housings. Also trying to slide the rams out from the lower housing was not easy as they did not slide smoothly out the bores. More on this later.

Fixing fork nut

The front fork lowers have 4 threaded spacers welded onto them, they all support the front fender however one is the nut that secures the front brake drum arm. This one was broken off at the welds. Needless to say the front brakes do not operate without the arm securing attached to the fork assembly. I used the original threaded spacer and TIG welded it back on.

Fork hone

So here comes the story of why the forks had trouble coming apart. I knew that when I welded the spacer back onto the lower fork tube that the inner bore of the tube may distort. It turns out I was right and after TIG welding the spacer on the fork ram, and bushing, would not slide down into the housing. As I inspected a bit more closely it would appear that the factory welded spacers also distorted the tubes which is why I suspect the bushings were so hard to remove from the fork lowers. I am guessing that the factory must weld the nuts on after the rams are installed, this seems odd to me however I can not determine how they could have installed the rams into distorted fork lowers. I had to come up with a solution to help everything go together, and slide, smoothly. The fork lowers have a second tube in them to allow for spring support. This made for cleaning of the inside bore difficult. In the end I decided I would machine a pipe down enough to fit into the fork lowers. I then glued sandpaper onto the pipe to turn it into a hone.

Honing the fork

Here you can see me honing the side of the fork lower which has the nuts welded onto them. I was able to take off just enough material on the inside of the fork to allow the ram to slide smoothly. Lucky for me these forks are 1965 technology and they do not possess, or require, the precision of modern engineering.

B4 and after ram

The fork rams received a good polishing to clean up some of the old wear and tear. The rams inspected to be in good order with no major nicks. The upper fork is original and the lower is one that has been cleaned up.

Polished fork bushing

These are the bushings that need to slide smoothly into the fork housings. You can see the scoring on the upper bushing that was caused upon removal. I was able to clean up the scoring and give them a good polish before reassembly.

Seal compare

I have pretty much sourced every single part I needed for the CB160 project. I think I have only failed on 1 part and that is the fork seals. I was able to find a supplier however the logistics involved in actually performing the purchase transaction made it too difficult to obtain the seals. I opted for improvisation. The CB160 had 2 different fork seals. 1 for the early model (which is mine) and 1 for the later model. Turns out the later ones are still available from Honda. The difference between the 2 different years is the outer diameter of the seal. Lucky for me the inside diameters appear to be the same. The later models have a smaller OD which also turns out to work in my favor. So in order to adapt the later model smaller OD into my early model forks I opted to machine a press fit spacer as an adapter sleeve for the different seal. The top seal in this picture is the original. The bottom left is the newer seal with a smaller OD and the right is the completed spacer I machined to use as an adapter.

Fork seal bushing 1

I used a 1.750″ seamless pipe with a .250 wall thickness to machine the adapter from. It was hard to measure down to the thousandth of an inch in order to accommodate a press fit.

Fork seal bushing 3

This is the new style seal with the completed bushing.

Fork seal bushing 2

And here is what the seal looks like pressed into the bushing. I did not post pictures of the installed assembly into the fork tube however the press fit turned out great! Hopefully no oil leaks around the OD of the seal or bushing.

Seal housing o-rings

One other part I failed at obtaining was the O-rings required to seal the fork seal housing to the lower fork tube. They are a 38 x 2 mm o-ring and are no longer available. With some searching I found that VW uses the same size seal on multiple engine components including fuel pumps. I ordered a couple up from VW in hopes they would work. Turns out the fit was perfect. Problem solved.

Coating fork lower

So with all of my fork issues behind me all that was left was to perform the finishing touches before reassembly. The fork lowers got sandblasted and powder coated matte black.

Fork ready 4 assembling

Here are all the refinished components. Seat housings chromed, rams polished, lowers powder coated, housing honed, and seals installed. All ready for reassembly.

Forks assembled

Completed forks with aftermarket bellows added to them. Another “to do ” item checked off the list.

Blasted tank 1

It is getting to the point where I need to get some main components refinished. I started by glass bead blasting the tank. The clean up turned out fantastic. It was stripped of all the old paint and rust and upon inspection it would appear the tank had no dents or damage. There will be very little body work required.

Blasted tank 2

The underside of the tank cleaned up great too. Totally stripped of all 1965 color.

Polished tank filler

I thought that polishing the filler neck would give a more finished look plus it will tie in nicely with the polished fuel cap.

Tank repair kit

The tank had a lot of rust in it and was going to require some serious attention to get it all cleaned up. Earlier I had ordered a POR-15 fuel tank repair kit knowing I was going to have to attack my problems with chemicals. I used the kit however not exactly as the directions stated. Here was the sequence I used to achieve fantastic results;
1. Rinsed that tank with Marine Clean for 15 minutes
2. Rinsed the tank with CLR for 15 minutes.
3. Added approximately half a cup of glass beads and 2 cups distilled water and shook vigorously for 15 minutes.
4. Rinses and pressure wash the inside of the tank
5. Added another half cup of glass beads and halve a bottle of Prep and Ready and shook again for 15 minutes
6. Rinsed and pressure washed
7. Added straight Prep and Ready and soaked for half an hour while repositioning.
8. Rinsed and pressure washed.
9. Dried the tank for 4 days which included multiple sessions with a heat gun
10. Coated the tank with a sealer.
The whole process took time however the results were great. The tank cleaned up inside to bare metal and there were no leaks before, or after, the sealer.

Prepped frame

Although this picture is not overly exciting it shows the results of hours of work. I ground lots of the old, ugly, factory welds and redid them with TIG. All the crucial visual areas got ground and sanded smooth. The frame is now ready for sandblasting, a bit more touch up, and then paint.

Cleaned up downtube

This is one of the highlights of the bike. The down tube. For me this section of the frame needs to have a very clean look to it. A lot of the factory holes were filled in and then the welds were sanded smooth.

Title rear wheel

The game plan with the 65 Revive Honda CB160 cafe racer build was to perform as much of the fabrication work before tearing the entire bike apart. Lots of people choose to strip the bike down first then perform the modifications. I want to keep the bike together as much as possible therefore I can ensure everything will work in harmony with one another and that way there will be no unwanted surprises during final reassembly.

The finishing stage will be the final chapter in the rebuild however in the case of the wheels I was forced into performing the detail work now. The reason is that fender mounting requires that I have the proper, and properly inflated, front tire on the bike. Since I didn’t want to mount up my new tires on old rims I opted to tackle the rim rebuild at this stage in the game.

The plan was to abandon the factory chrome look of the rims. The hoops and hubs will get powder coated matte black and then will be laced back together using stainless steel spokes and nipples.

I have already collected all my parts including tires, tubes, rim strips, spokes, nipples, bearings, bushings, and brake hardware. Therefore all that was required was some time and labor.

I’ll run you through the details using visuals. The rims turned out fantastic. The powder coating went as well as I could have expected. Some parts had some minor flaws however the result equalled my experience. The hoops trued up and tensioned up and I was able to mount the tires without causing damage to the finish. Now I can continue on with more fabrication.

OEM front wheel

Here it is, the stock front wheel. The plan is to powder coat the hoop and hub matte black and then replace the OEM spokes with stainless steel Buchanan spokes.

Front de-laced

Front rim getting de-laced. The hub and hoop both inspect to be in good shape.

Front drum touch up

Set the drum up on the lathe to clean up the brake friction surface. No cutting required, light sanding did the trick.

Hoop blasted half n half

Initially I thought I would have to strip the chrome from the OEM hoops before powder coating. After doing some research I figured there was no reason I couldn’t powder over top of the original chrome. None of the factory chrome was flaking off and it was still all intact. I took the sandblaster to the bare hoop to rough, and clean, the original chrome. The left is sandblasted and the right is factory.

Wheel prepped 4 powder

All the wheel components have been prepped and blasted. Just need to be cleaned and then the power fogged on.

Hoop jig

The 18″ hoop just barely fits in the powder coating oven. It needs to be held at just the right angle in order for it to fit. I constructed a crude jig to hold the rim just right for baking.

Hub fogged

Here the front hub has been fogged with matte black powder just before it gets placed into the oven.

Hoop baked

You can see the tight fit of the rim in the oven. The rim has been baked and is now in cool down stage.

Hubs matte black

Completed front hubs. Looks good.

Buchanan's

I was in the area of Azusa California so I took the opportunity to stop in at Buchanan’s to order and pick up my stainless steel spokes. Great service and great product. Very helpful staff.

Buchanan's spokes

Spoke set for the CB included double butted spokes with stainless nipples. Front and rear rims use the identical spoke lengths.

Front rebuild

Starting to lace and rebuild the front rim.

Front laced

Initial lacing complete, onto the trueing and tensioning.

Front trued

The rim trued up and tensioned up beautifully. Worked out great.

Before and after wheels

New matte black front rebuilt wheel compared to the OEM rear wheel.

Cutting out bushings

With the front rebuilt it was time to complete the rear wheel. The sprocket is mounted into rubber bushings and I had new ones to install. The factory bushings are pressed into a blind hole. I opted to mill the old bushings out.

Pressing in bushings

With the rear hub prepped and powdered I was able to press in new sprocket bushings.

4 new bushings

Rebuilt rear hub with new bushings and new bearings.

New factory brakes

Front and rear both got a new set of brake shoes. I was able to score some NOS shoes for the rear.

New tires

The rubber was harder to find then I initially expected. I settled on some Duro tires which had similar tread patterns to the factory tires. I went with a 2.50-18 front and a 3.00-18 rear.

Rear wheel complete

The completed rear wheel with the new rubber mounted.

New wheels

Final shot of the wheel rebuild. I had to sweep out the shop so the bike got to see daylight for a brief period.

Title piston

A cyber friend of mine, Andrew, who happens to also own a Honda CB160 asked if I would be interested in performing a piston modification for his Ducati 160 Monza Jr. He had sent me a document that Tom Bailey wrote outlining changes that could be made to a stock piston for these engines.

The stock 160 piston came with an extra oil ring at the bottom of the skirt. I guess Ducati figured they needed a bit more control. In order to reduce friction and drag some owners opt to cut the bottom oil ring groove off. Once the skirt is trimmed the sides, just below the pin bosses, get a 1.5” radius machined into them in order to lighten the unit up. Once the machining is done the piston then gets polished in order to relieve any stress caused by nicks and scratches.

Since I am not a production machine shop I am not usually set up to perform custom modifications. I am, however, always intrigued by the challenge of figuring out how to accomplish the task. I agreed to give it a go and told Andrew that if I screw it up he’ll be on the hook for a new piston. I guess he figured it was worth the risk because he sent me the piston.

I am happy to say that the minor procedure worked out fine. No money mistakes were made and the piston is on its way back to Andrew.

The following is picture book format of the procedure. It’s nothing too exciting however it involves a piston, metal, and machining so how can that not be cool to look at!

Stock piston

Stock piston from the Ducati 160 Monza Jr. You can see the 4th oil ring groove on the lower skirt.

Trimmed skirt

Trimmed off the lower part of the skirt just to the point were the oil ring groove disappeared. Note how thick the casting is.

Trimmed pistion casting

Trimmed off the thick section of extra casting. I measured the stock piston and then machined the skirt to the identical dimensions.

Piston holding fixture

I built this fixture to mount to my rotary table in order to secure the piston perfectly in place for machining a 1.5″ radius into the skirt.

Skirt radius

Here the piston is mounted and one side cut.

The following is a quick clip showing the milling machine set up for radiusing the piston. The fixture was designed specifically for a 1.5″ radius.

Completed piston machining

Finished rough machining. Both side radius dimensions are identical.

Piston B4 polishing

Final step is to polish the piston up to relieve any stress fractures. This is the stock piston before polishing.

Piston clean up on lathe

I set the piston up on the lathe and give it a quick cleaning before I move onto a 3 stage buffing process using the polishing compounds and the buffing wheels.

Completed piston bottom

Sorry, no pictures of the buffing. Here is the completed piston underside.

Completed piston top

Completion stage, looks awesome. I need to blow this picture up and frame it. I could stare at this stuff all day.

Title pocket

My dad is an avid motorcycle rider and has been riding Yamaha’s FJ series bikes for 20 years. He has been waiting patiently for the Gen III to come out and finally in 2013 Yamaha released the FJR1300 update. So after some wheeling and dealing he was able to score himself a new FJR to replace his previous model.

He does lots of long distance riding and is a member of the Iron Butt Association. When doing long distances there are certain modifications that get done to the bikes to help improve certain aspects, and characteristics, of the bike. One of those mods fall under the safety category. In the case of my dad’s preferences he is a big believer in outfitting the bike with highly visible LED lighting to help other motorists be able to see him. He also likes to run extra storage space and so along with the factory side cases he also runs a water proof Pelican Case on the back rack.

So what does this all equate to for me? Basically it comes down to coming up a way to mount LED brake lights, a Pelican case , and a couple of LED auxiliary driving lights to the new FJR. In addition to the required equipment my dad requested that I incorporate an “Iron Butt” license plate frame into the rear lights. He left the decision making up to me so I came up with something that I would hope meet his expectations.

I am spiltting this project up into 2 postings. The first one is the building of the rear bracket. The next posting will run you through the mounting of the Pelican case as well as the fabrication of the front LED lights. Enjoy.

Starting with

Here is what I was supplied with for the rear of the bike. The Pelican case will need to get mounted to the back rack and then a the LED strip lights and license plate frame will need to be attached to the case. The license plate frame is made for USA motorcycle plates. Canadian plates are a different size therefore I will use it in conjunction with the LEDs.

Plate trimming 1

I started by cutting up the license plate frame and cleaning it up on the mill.

Plate trimming 2

Here I was able to square it up perfectly.

Plate trimming 3

This is what is left with of the plate frame. At least now I have some badges I can work with.

Plate game plan

With the Iron Butt name plates and the LED dimensions known I was able to draw up a master plate idea in AutoCad.

Knocking of .500

I used 3/8″ x 4″ 6061 aluminum stock to machine the LED mount from. Since the plan called for a 3.5″ width I opted to trim .500″ off using the plasma.

Edge clean up

Once the plate was plasma cut I squared up all four edges using the mill.

Milling corners

Next all the corners where machined up and notched out.

Milling plate pockets

My plan called for pocketing out 4 areas to inset and flush mount the LEDs and plate frame name badges.

Pockets complete

Here the plate has been rough machined. All AutoCad dimensions worked out perfectly and a test fit shows that all components link together great.

Drilling mounts

The rear of the bracket had 4 mounting holes drilled and tapped and then another 4 holes drilled to allow for “Iron Butt” name plate removal should it be required.

Loomed studs

I machined some 8mm mounting studs that will allow the bracket to bolt onto the rear of the Pelican Case. On the center two studs I drilled holes to allow for routing of the LED witing.

Completed plate machining

This is the roughed out bracket. The plan is to powder coat it flat black yet to help it blend into the Pelican Case. The Black will allow the name plates, and LEDs, to “pop”

Taking on my CB160 65 Revive project has introduced me to others, in the cyber world, which are owners of the same bike. One of those people is Andrew who has his own garage project in the works with his own CB160. His bike, Lucille, is getting an engine overhaul this winter season to freshen things up for the next riding season. If you’re interested in checking out his progress you can visit his blog Meet Lucille.

I felt as though I have done my CB160 rebuild coverage to death on the blog lately. It’s too bad because I have a long ways to go yet. Anyway…in an effort to get back to fabricating I opted to perform a small machining task for Andrew in order to help make a small contribution to his project.

Andrew has planned to get rid of the electric starter on his bike and rely solely on the kick-starter (or push start). My original plan was to do the same thing with my bike however the rear sets were going to interfere with the kick-starter therefore I opted to get rid of the kick-starter and keep the electric start. I wasn’t happy with the decision to maintain the extra pounds associated with the starter however the bike needs to be practical and streeteable.

Here is what the factory starter looks like installed on the CB160 engine.

So where is this heading? Well when the starter is removed permanently you need to be able to fill the empty hole with something that will keep the dirt out and the oil in. These items are known as starter block off plates. I am unsure what is available for block off plates in the aftermarket world; I never looked or researched it. I already had one mentally designed for my bike but then never got the chance to build it. Well I looked back in my brains archives and found the engineering drawn still filed away, I figured it was still there since the archives typically don’t get trashed for 2 years or so.

So with Lucille in need of a plate and me with an idea I figured it was time to unite the two and make something happen. The plan was to build a plate that required no modifications to the engine, look clean, stay put, and seal the oil. The material of choice was a section of solid 6061 aluminum round stock. Lately I have been telling my stories through pictures so I will continue the format this time as well. Follow along.

In order to machine the block off plate for Lucille I used my mock up engine that is currently installed in my bike. The hole on the left side is what needs to be filled. The idea is to machine a plug that gets installed from the inside of the side cover. The side cover bolted on is what will prevent the plug from backing out and a landing machined onto the plug will keep it from falling out from the other side. Confused? Just look at the pictures, you’ll get it.

Here are my collected necessities. My spare starter for taking measurments, a chunk of 3″ 6061 aluminum and an assortment of O-rings in hopes that one will work.

The overall depth of the plug is aproximately 1.600″ so I started by cutting off a 2″ section of aluminum to chuck up into the lathe.

This is the visible end of the block of plate machined down to spec. The diameter is the same as the factory starter housing diameter.

I machined in a groove in order to fit the o-ring seal. I made the groove just a hair wider the the o-ring thickness in order to allow for the compressing of the ring.

Here I have the other side of the plug turned down to spec. This is the side that will contact the side cover. The plug is getting parted off to within a few thou of its final dimension.

Here is the completed block off plate. You can see the landing that was machined into the center section. This landing is what will prevent the plug from coming out of the case.

Since the plug is going to be installed from the inside, the case needed to be cleaned up. The sharp edge was smoothed out, using a flap wheel, in order to prevent the o-ring from being cut while being installed.

Here is the installed position from inside the case. A little bit of white lithium grease on the oring and the plug slid in beautifully. You can now get a better idea of how the side case cover, once bolted on, will keep the plug put.

And here is what is visible from outside the engine. It looks super clean which is just how I like it. Hopefully Lucille will appreicate the addition.