Posts Tagged ‘welding’

169-000

So I made the mistake of purchasing a 36” slip roll capable of handling 16 gauge (at least that’s what is advertised, I haven’t actually tried it yet). The mistake being that I am in a serious state of running out of shop space for equipment. The machine actually sat in the middle of my shop for a good 4 months until I finally decided it wasn’t going to find a home for itself. One Saturday I just sucked it up and built a steel frame for it and added some wheels so that I could stand the unit up on end and roll it into a corner.

Anyway…this post isn’t actually about the machine but more about just messing around with random stuff. I figured I should actually try out the slip roll since I paid money for it. I did not have a current use for it, only brainstormed ideas where it would be required at a later date. I plasma chopped a chunk of 20 gauge sheet metal out and set it up in the slip roll. The intention was just to watch the metal bend, be satisfied, and then recycle it.

Well the bending and satisfaction part worked out as planned but the recycling was harder to do. On a side note…I am a sucker for scrap metal bins. I know of multiple good bins in my area which I frequent. I have access to lots of brake rotors so I exchange what I take with rotors. The bins get paid out to whoever owns them based on weight therefore I make sure I leave more weight then I take. The point being that I feel sorry for scrap metal and find it hard to watch it go to the recyclers. I want to save it all and build it into something cool. Well I have learned that I am only one person and that I can not save all the metal on my own. I try to frequent the bins less often as I find the less I know the better off I am. The whole point of this is that I couldn’t bring myself to scraping my slip roll sample.

So this post is how I couldn’t let go of a chunk of scrap sheet metal. After I inflicted my Big Brother powers and forced the steel to comply with my agenda I took a second look and figured I may be able to turn it into something useful. The following pictures take you through an impromptu garage session. Meh.

169-010

So this is how the unplanned project began. I simply wanted to see a section of steel get bent in my new 36″ slip roll. It started out so innocent.

169-020

Once the steel was bent I figured I would weld it into a tear drop shape and then trim the top up, free hand, with the plasma cutter to give it more of a unique shape.

169-030

This is what the shape came out to be.

169-040

The time came to transform the tear drop cylinder into something more than just a shiny piece of metal. I used some ER70S 3.2mm TIG filler rod and started twisting it up and tacking it on.

169-050

Just kept bending, twisting, and welding as I went along.

169-060

Finally decided I was finished once I had a fairly uniform design built.

169-070

Next I spray bombed on a clear lacquer finish to give the bare steel some protection, and shine.

169-080

As you can see from the foliage poking out the top I recycled my steel into a vase cover. I used a glass cylinder with the proper diameter which slid perfectly into the tear drop as the holder for the water. My creation is simply a facade for the murky water that will inevitably appear.

169-090

Personalized it with a gordsgarage decal.

169-100

172-000

A friend of mine that works at the local Porsche dealer has been harassing, yes harassing, me to supply him with a gordsgarage automotive themed item for what seems like an eternity. My friend, who shall remain nameless, came to me with a Porsche PCCB center lock brake rotor that was taken out of service and requested that it be converted into a clock for his man cave. I said I would see what I could do.

As cool as clocks can be they always seem to be the default fab item for anything that is round. Brake rotor clocks have been done, and overdone, time and time again. If I was going to build a clock it needed to have a slightly different style then most. Even at that it is hard to come up with a truly unique way to display seconds that tick by.

The one thing I had going for me is that ceramic brake rotors weigh a 3rd of what cast rotors do. This will allow me to be able to tack on a bit more weight and still allow it to be hung on a wall. I’m not sure I am totally thrilled with the end result but the feedback I received from others appears that the design meets a certain amount of approval. It serves its function and fits into its environment as designed. The following post takes you through the build process of my version of a man cave brake rotor clock.

172-010

The project revolves around a used Center Lock Porsche PCCB rear brake rotor. Because of the center lock design the holes, where the wheel bolts would typically go, are now equipped with red anodized wheel lugs.

Since I wanted to build something more then just a flat hanging rotor attached to a wall I started off by machining some pivots out of 1.75″ solid round 6061 aluminum. First order of business was to drill, and tap, an 8mm hole.

172-030

Onto the milling machine where the center section got hogged out an inch deep and the width of the rotor.

172-040

The beauty of swarf makes up for the waste it becomes.

172-050

Test fitting of the rough machined rotor clamps prove to fit perfectly.

172-060

To secure the clamps to the rotor a couple of 1/4″ set screws were fitted into each clamp.

172-070

To complete the pivot assemblies a couple end caps and center spacers were spun out on the lathe. I opted to keep all the angles, and design, fairly clean and simple with no added cuts or highlights.

172-080

These are the rough machined pivot assemblies that will get clamped onto opposite ends of the rotor.

172-090

Next it was time to move on the steel work and fabricate the actual wall holder. The rotor pivots were going to require a bushing to help provide the support. A couple of spacers were cut, and faced, from some 2″ seamless tubing I had remaining from my metal bender rollers I built.

172-100

Each bushing received a 3/8″ hole drilled only through one side. Keep scrolling, the reason will be revealed.

172-110

The pivot bushings required some support. I wanted to keep things simple and clean without making the unit look messy or chunky. Not to mention I needed to keep the weight of the entire project as low as possible. I opted to bend some 3/8″ cold rolled rod with a radius that would visually match the brake rotor.

172-120

I sketched out the rotor on the bench to aid in the mock up. This way I could ensure that my clearances would work and that my center line would actual be centered.

172-130

Since the rod support required something to actually be attached to I trimmed up a 19 inch section of 3″ x 1/8″ flat bar. I plasma cut the ends to get rid of the corners.

172-140

I was kind of stuck for creative ideas to attach the rod to the wall support plate. Usually I like to get creative with sort of thing. I decided on keeping the brake rotor the main focal point and opted to fabricate some clean and simple support rods from some 7/8″ cold rolled.

172-150

Concept revealed. Mocking up the components before putting the TIG to them.

172-160

Everything was tacked and final welded. Time to move onto to the other parts of the project.

172-170

The clock face was sliced from a sheet of 6061 aluminum using the circle guide for the plasma torch. Ironically this is the same sheet of aluminum that I cut my German tank sprocket clock face from years ago.

172-180

To clean up the plasma cut, and to ensure the face was perfectly round, the aluminum was mounted on the lathe and trimmed up.

172-190

The PCCB rotor hub has two 8mm holes threaded from factory 180 degrees apart. With a couple of spacers I would be able to mount the face to these existing holes. I programmed in the proper spacing on the DRO for the mill and drilled the face for mounting.

172-200

Here the entire project was mocked up to ensure everything would fit. It does.

172-210

Onto the art work for the clock face. I decided to build a tachometer themed time keeper. Using a combination of Draftsight, InkScape, and vinyl plotter software I came up with this.

172-220

I vinyl plotted the entire face on black vinyl first to ensure it would work the way I wanted it too. I then printed just the “redline” section on red vinyl.

172-230

It’s always so satisfying when I start to peel back the transfer tape to reveal the vinyl. I wasn’t sure what color background to use. I thought of powder coding the face white but in the end I opted to stick with a brushed finish. I think I made the right choice.

172-240

Here is the completed clock. I use continuous sweep movements for my clock motors which not only gets rid of the “ticking” but also gives a more precision look to the second hand.

172-250

Time to move onto the hub side of the rotor. Since this clock is going in a “man cave” I thought I would personalize it for Mike. Started by slicing out a 7 inch diameter section of mild steel to be used as a mounting for more vinyl decaling.

172-260

Porsche uses a 5 x 130 wheel bolt pattern. Using the mills DRO I marked all the mounting holes and then finished them off on the drill press.

172-270

Building using math is so satisfying as things always fit together perfectly.

172-280

The time has come where all the fabrication work is complete and it’s time to move onto the finishing stage. I removed the hub from the rotor and chucked it up in the lathe in order to clean the finish up using Scotchbrite.

172-290

Tractor Red powder is incredibly close to the same shade as factory Porsche red brake calipers. Since I know Mike likes red I figured using the color was a “no brainer”

172-300

The rotor mount was wired to one of my oven’s baking racks and then fogged with the powder.

172-310

With the pivot mounts sealed using silicone plugs it was time to bake the powder coating at 375 degrees for 15 minutes.

172-320

Here are all the components that make up the project before the assembly phase begins. Everything was either powder coated, polished, or brush finished.

172-330

The hub side face received a personalized Mike’s Place decal so that you knew exactly where you are.

172-340

The contrast between the red and the brushed finishes looks good. I was happy that the pivot still works with the added thickness of the power coating.

172-350

Rotor mounted up and centered just waiting for all the guts to be installed.

172-360

The clock face gets mounted using a couple of 5mm black socket head cap screws. Even though the screws are placed a bit far apart they still help give the clock face that”gauge” look. In order for the clock battery to be replaced the face will need to be unbolted from the hub.

172-370

Since the rotor was mounted on a pivot it was important that all visible angles would look good. I like all the nice, clean, lines of the cross section.

172-380

The rotor lugs were originally anodized red from the factory. Since the finish on them was slightly worn, plus the shade of red would clash, I decided to strip them of the anodizing and give them a brushed finish instead.

172-390

I try and add a “GG” somewhere to my projects. This time I applied a decal on the inside where the only time anyone will see it is when the clock motor battery needs to be changed. In this picture the mounting spacers for the clock face are evident.

172-400

172-410

164-010

I’m a bit overdue for a blog update. January and February have been busy as I find myself in the middle of developing my basement. It’s taken this long to start construction as I had submitted, over the years, multiple requests to the boss of the house to develop part of the bottom floor into a machine shop. Even though I had followed proper request procedures my application had continued to be denied. It was only until now that I chose to accept my failed dream and therefore blue printed the space out to be a bedroom instead. I am trying to find the silver lining surrounding my defeat, I need more time.

As far as the CNC plasma table build goes it is still active but did slow down a bit. Good news is I still have the enthusiasm to see the project to completion. I have all the material sitting on the workbench for the next stage. I hope to be back on it in a month or so.

Around the holiday break in December I had a few hours of spare time so I cleaned up the shop area. Once everything was put away and swept up I looked around to see if I could scratch a creative itch I had. I found a used, but still decent, clutch disc out of a Porsche laying in a pile of junk. I set it on the bench and stared at it for a while. I wanted to build something, didn’t want it to take too long, and wanted a decent satisfaction level to result from my efforts. A Porsche technician had given me the disc and so I thought I would give it back to him but in a different state. Decided I would fab an old school shop clock, the following is what I came up with.

164-020

Started by ring rolling a section of .250″ cold rolled steel

164-030

I band sawed 12 little sections of .500″ cold rolled round bar then cleaned them up on the lathe. Each one received cross drilling on the mill.

164-040

Next they all went back onto the lathe where they where all threaded .250″ deep with a 6mm tap.

164-050

To ensure all my number markings would be spaced properly I created a paper template using a CAD program. The ring, with all the .500″ markings, got locked into place at the proper spacing.

164-060

Next the .500″ markings got TIG welded into place.

164-070

Here is the completed ring. I hid the closing gap of the ring inside one of the steel markers.

164-080

Onto the face of the clock. I trimmed out a 13″ disc from a chunk of 10 gauge steel. Machined a center bushing in order to allow for a clock motor to be mounted. Then I ring rolled some 1″ flat bar in order to give the perimeter a more finished look.

164-090

Clock motor bushing was TIG welded into place.

164-100

I wanted to ensure the clock would hang flush against a vertical surface. A section of flat bar was welded into place to allowing for mounting to a wall.

164-110

Here is the finished fabrication work. Next step will be the finishing and artwork.

164-120

Old school Porsche meant going with a red a white theme. The clock components received powder coating.

164-130

Here the clock face receives a 20minute bake session.

164-140

The artwork was going to be applied in the form of a vinyl decal. I downloaded the proper Porsche font and designed the look of the clock face using Inkscape .

164-150

I cut the 1 piece decal out using my vinyl plotter.

164-160

With the decal applied all that was left was component assembly.

164-170

164-180

155 Title turbo

With the CB160 project complete I find myself floating between universes with no clear direction. I have more of my own project ideas that I would like to pursue but also find myself in idle mode. There is never a shortage of tasks to complete for others and although I have got better at managing the “request” list I figured I would take on a quick and simple project.

The Porsche dealership in the city was in need of some tool room organization and they required some way to store some large equipment items. The dealership is required to purchase, and needs, certain special tools that are available from the manufacturer. One of these special tools includes multiple large metal engine table lift adapters. Basically they are comprised of metal channel configured to adapt to different models of Porsche engines. The cradles sit upon a hydraulic engine scissor lift table and allows for removal of power train units for various models Porsche produces.

The cradle adapters are big, bulky, heavy, and awkward to store and to move. The have leaned up against a wall for years and all the related adapters just get thrown in a pile. Since the dealership is moving into a brand new facility they didn’t what to transfer the “tool pile” into the new tool room. Some means to organize, store, and move the tooling was required.

155 Cayenne cradle

The cradles, and adapters, that require storage are used on top of an engine lift table. Here is a picture of a Cayenne engine and transmission sitting on the cradle that is perched on top of the lifting table. The adapter is the gold colored contraption. Porsche has multiple of these adapted including Panamera, Carrera GT, and Cayenne.

I had offered to weld up an A-frame style cart that would allow the larger cradles to hang. The idea would be to fabricate shelving for all the extra adapters. The only request on the dealerships part was that the cart was painted red. I basically was allowed to fabricate the cart any way I saw fit as long as it held all the necessary tooling.

So I lugged all the engine cradles and adapters home and started to measure and configure in order to come up with a plan. The engineering was far from complicated and the main focus was to make the entire unit as compact as possible.

It seems like it has been awhile since I have posted just some basic fabrication that I do in the shop. To some of you the pictures may be boring. For me I like seeing how others complete some of the most basic tasks and so this is what I have tried to show. It is cool how many different ways there are to go about accomplishing the same thing. The following shows you my way.

155 setting for circles

Setting up my plasma circle guide to do some radius cuts on 8″ mild steel. The radius gets set to 4 inches.

155 spittin sparks

I love watching sparks fly. Some people have a horsepower and torque addiction. For me it’s all about molten metal.

155 rough cur 8 inches

This is the top tray and support for the structure built from 8″ wide by 3/8″ thick mild steel. I wanted to give the tray come nice lines therefore curves are in order.

155 bending edges

The top tray support needs some sides in order to prevent stored hardware from getting away. The sides were bent from 2″ x .125″ flat bar.

155 clamped 4 welding

The flat bar sides were bent in two sections then clamped to the base and welded.

155 top tray

Here is the top tray support completed.

155 cut 2 length

With the top completed it was time to move onto the base. The stock was cut to size. The base was plasma cut out of 10 gauge and the perimeter is 2×4 steel tubing.

155 lower tray

Not a lot of fancy engineering going on here. The base is fairly basic. Just needed to be clamped in place and welded. The base measured 24″ x 60″.

155 caster spacing

I hate drilling for casters. It is boring and time consuming so I decided to make a jig to speed things up. I dialed in the caster bolt spacing into the milling machined DRO.

155 caster template

With the DRO programmed I drilled a template with my caster bolt spacing.

155 drilling 4 wheels

Now that I had a jig with perfect bolt hole spacing I was able to quickly drill all 4 corners of the base for fitting of the casters.

155 base done

Base complete. Nothing great to look at at but it’s functional.

155 clamping uprights

Time to connect the upper tray to the lower base. Lots of clamping and measuring before things got tack welded into place.

155 3D roughed

Here the upper and lower got final welded. Everything measured out square. The Germans would be proud of me.

155 test fit b4 continuing

Before going on I wanted to ensure the cradles would hang properly on the rack. Clearances worked out great.

155 pegs clear

The peg clearance wasn’t left to chance, I calculated it all out before welding on the hooks.

155 middle tray

Last tray to complete. I planned to put a middle tray in to allow for more storage. This one was built from 10 gauge and featured a similar design to the top tray.

155 middle tray test

Test fitting the middle tray before moving on. In this picture you can see the hooks I fabricated to allow for hanging of the engine cradles.

155 middle tray sides

Bending more sides for the middle tray.

155 midle sides tacked

Clamped and TIG welded.

155 fab complete

Completed support. All it needs now is some color.

155 underbelly red

I gave the option of sending out the rack for powder coating or I could just Tremclad it as a cheap option. They opted for Tremclad so although the finish prevents the final product from looking completely pro it was not in the budget. They requested red for visibility so the Fire Engine red got brushed on.

155 Fire Engine red

155 trays

155 Finished cart

Title headlight on

I continue to get all the fabrication work done before the entire bike gets stripped down for finishing. I started at the tail end and worked my way to the front. With all the under seat and under tank work done it was time to move onto the gauge and headlight mount. As I mentioned in my previous post I decided to abandon the factory headlight and gauge in exchange for something a little more advanced and cafe designed.

Original headlight

Original CB160 headlight with an integrated speedometer. Was originally going to use it but in the end decided to abandon it.

I struggled coming up with a unique way to mount the gauge and new headlight. Typically the headlights are mounting using clamp on ears that are secured to the upper forks. Although I think this design looks good I wanted to build something that didn’t look like it was a universal fit. I tried to mentally blueprint the design but nothing was working so I opted to start cutting metal and would wait to see the direction it would start to take.

The end design turned out to be one piece. In order to avoid clamping to the upper fork tubes I opted to secure the entire setup with O-rings. This way it was not only secure but it was also, technically, rubber mounted. The Motogadget gauge is supposed to be shielded from excessive vibrations and I suspect the 60 watt halogen bulb filament will also benefit from not getting overly shaken.

As in the past I’ll let the pictures do the story telling. In the end I was happy with the design. Things always look better when they are finished so I suspect the bracket assembly will all come together once it is powder coated.

Before after verts

So the point was to come up with an unique way of mounting the headlight and gauge to the upper fork tubes. Didn’t want to builtd something weird or awkward and tried for clean. I started with some 1.50″ DOM tubing and cut windows in order to show off the upper fork rams.

Slotting the verts

I started by milling out a 1/2″ slot on both sides of the tube.

Vert half way

Cutting the window

Next it got clamped down in the band saw and the window was cut out.

Completed verts

The windows come out perfectly square with clean rounded corners.

Vert concept

The idea is to be able to slide the bracket assembly down over the forks with the upper triple clamp removed.

O-ring mounting

What is going to hold the assembly solid is 4 O-rings. 2 on the bottom and 2 on the top. The height of the bracket tubes are trimmed perfectly to allow for the O-rings to compress and therefore hold the bracket assembly solid. I needed to take into account my steering head adjustment, including new bearings, as this plays a factor on the overall height.

Cluster bracket mocked up

With the vertical supports fabricated I turned my attention towards the gauge mount. The mount needs to be as small as possible in order not to be seen but also allow for enough support in order to hold the entire bracket together. I used the upper triple clamp as a guide and then plasma out the rough shape.

Might work

The mocked up mount looks good. Time to sand and grind the edges to clean up the lines.

Gauge holes

4 holes where drilled. One center one to allow for the gauge wiring and then 3 more to accommodate the gauge mounting.

Welding gauge mount

With everything test fit and squared up it was time to TIG weld the bracket together.

Headlight ears

Next it was time to figure out how to build the headlight bucket ears. I wanted everything to flow and integrate. I didn’t have a clear plan as to how to execute the mounting so I decided to just start playing. Here I took a section of 2″ flat bar and gave it a nice clean 180 degree bend.

Ear trimming

Next the bend was cut in have in order to give me 2 ears. I traced out some shapes that seemed to visually work and trimmed the ears up with the plasma.

Ears roughed

After getting sliced up and then worked over on the belt sander the ears started to take shape.

Mounted ears

Test fitting them on the new headlight shows that the clearances are going to work.

Welding ears

Time to TIG everything together and hope that the heat doesn’t twist it out of shape.

Roughed headlight bracket

Here is my “non-vision” of a bracket coming to life. Not much to look at off the bike however it’s sole intent is only to serve a purpose.

Welded ears

The ear mounting worked out well, it looks as though ears were peeled out from the 1.500: DOM tubing.

Headlight mount in place

The test fit shows that everything is square and the install is smooth. Note the upper clamping O-rings are not currently installed.

Headlight and gauge

And here it is with the headlight and gauge roughly installed. The lines are clean and the fitment looks good. Clearances are tight but not too tight. I had previously powered up the headlight in order to get a bead on the alignment which, in turn, helped me decided the placement of the ears.

Gauge view

The new Motogadget gauge is cradled perfectly in the upper triple clamp. Super clean!

Mocked up fork bracket

Title bike shop

It has been awhile since I have posted the progress made on the 65 Revive CB160 cafe racer build. Things have not slowed down and lots of fab worked has taken place. It’s a slow, but enjoyable, process and much time has been spent staring at all the angles and mentally engineering the game plan.

Up to this point I had the exhaust under control and it was time to turn my attention to the seat. I was dreading this section simply because there were many factors to consider and everything needed to tie in together. After much work I am happy to say that it appears to all be coming together. I am retrofitting a fibreglass solo seat to the bike. The rear frame hoop was going to need to be build and then all the electrical components would have to get hidden under the seat.

I’ll run you through the details using the following pictures. Much of the fab work never got photographed this time round simply because I was concentrating more on the job at hand then the blog. Anyway…the following gives you the highlights.

Starting mess

This is what I am starting with. Here is what the CB160 looks like, bone stock, under the seat. I planning to cram a lot into this space.

Tank mount has 2 go

The fuel tank mount is going to interfere with the seat placement. In order to maintain the look of the bike the seat has no choice but to tuck up clean to the tank. This means the factory tank mount will need to be relocated.

180 hoop

As I have collected parts for the CB160 I added an 180 degree seat hoop onto one of my orders. I wasn’t sure if I would use it so I decided to trim off the rear frame tabs and tack it into place to get a visual.

180 not working

I think it is fairly evident from this shot that the seat hoop will NOT work. I kinda figured so since the seat lines didn’t appear to be even close to the hoop lines.

Rear hoop template

Looks like I am going to have to try and build a seat hoop to fit. The plan is to bend a section of 7/8 pipe to match the shape of the seat. I needed to build a steel jig to wrap the steel around. I started by building a template of the seat hoop out of 1/8″ MDF

Baking sand

The seat pipe, that would need to be heated and ben,t was going to have to wrap around a fairly tight radius. The idea was to fill the pipe with sand first in order to prevent the pipe walls from collapsing during the bending. Since the pipe would be sealed during the heating process I wanted to ensure I had no moisture in the fill sand. I used some old baking sheets and heated all the moisture out of the sand using my powder coating oven.

Fillling seat hoop

I used a 7 foot section of thin wall 7/8 tubing and welded one end shut. I then filled the tube full using the dry sand.

Compressing sand

The other end of the tube got a 3/4″ nut welded to it. I then used a 3/4″ bolt and threaded it into the tube to compress the sand solid.

Clamped 4 bending

Here is what the bending jig looked like before I put the heat to it. You can see the steel template I built to resemble the shape of the seat. I cut it out of scrap 3/8″ steel plate using the previously built MDF template as a guide. The steel then got tack welded to the bench and angle iron was clamped in place to help hold the steel tube in proper location. The next step was all about the heat. using a oxy-acetylene torch I was able to get the pipe to bend like butter.

Bent hoop

And here you have it, the results of my bend attempt.

Nice!

The hoop worked out fantastic. The wall collapsed ever so slightly however it will absolutely not be a factor. I was more then impressed with how well the whole procedure turned out.

Plugs and hoop

I trimmed the seat hoop up to proper length and then built some solid steel frame plugs to help secure the hoop to the factory frame rails.

Plugs mocked

Frame plugs in place and ready for the hoop.

Hoop welded

The hoop was TIG welded into place and the frame ground down smooth.

Hoop fit 1

I am fairly critical of my work but in this case I would say the fit is near perfect. The lines of the seat fit beautifully along the new frame hoop.

Hoop fit 2

Another picture showing the fitment of the seat to the hoop.

Rock guard trimming

I had bought a rear rock guard to help keep road debris away from the engine. Before I could build the seat pan the fiberglass rock guard required some trimming in order to allow for pan placement.

Seat pan shape

First step in building the seat pan was to create an initial template using a cereal box.

Seat pan template

Once I had my cereal box template I then cut out a plasma guide template from 1/8″ MDF. Here the template is clamped to the seat pan steel and ready to get plasma cut.

Seat pan bend

Some minor bending on the press gave it the right angle to allow it to snuggle into the frame rails.

Seat pan test fit

The seat pan fitment worked out great. Eventually it will get welded all the way around the frame however more fab work is needed first.

Power distribution mounts

This next picture may not look like much but the work actually took many hours. Much of the bikes life line systems need to be hidden from sight therefore mounting options are limited. Most of the systems will be hidden under the seat. It took hours of staring and planning to come up with a mounting sequence that would work. Even ended up doing multiple “re-do’s”

Power distribution mock up 1

And here is the gist of it mocked up. The components that are now mounted under the seat include the battery, starter solenoid, fuse panel, power supply relay, license plate lights, charging regulator, ignition module, seat mounting posts, and wire management studs. It fits!

Power distribution mock up 2

Here is another angle of the set up. You can se the 4 aluminum posts that support my seat. The posts thread onto 8mm studs and therefore I am able to unscrew them and machine them down on the lathe in order to allow for precise seat fitment.

Power distribution mock up 3

I bought a lithium battery for the bike which allows me to mount it any way I want. Here you can see the power hook ups I built out of aluminum. To the left is the one side of my 2 piece custom license plate light I machined out of aluminum. In a few more pictures you will see what the light looks like from the exposed side.

Seat knob 1

I wanted to ensure I could remove the seat without any tools so I machined this knob out of some scrap I had. It is weighted very nicely to allow for quick spinning on and off.

Lic light and plate mount

Here is the rear underside of the seat pan. The license plate light housing will eventually get powder coated black. The tab to the right of the light is my license plate bracket holder.

Seat support

This is what the underside of the seat looks like. I built steel plates to fit precisely on top of my aluminum posts. The center section is my seat hold down.

Seat fit 1

Here’s an overall view of the rear tail section showing the fitment of the seat to the frame rails, the installed brake light and how the license light and license bracket is tucked up underneath. Super clean.

Seat knob 2

The seat hold down knob sits in the center section and does not protrude below the frame rails therefore is hides out of sight but is still very accessible.

Seat lines

Final shot with the seat mounted, adjusted, and secured with my power distribution hidden away. It was a long process however highly successful.

Title front end

So I was able to continue my auspuff progress on the CB160. The preliminary leg work had been accomplished and it was time to start cuttin’ and buttin’ stainless pipe together to make a structure that will hopefully represent a 2 into 1 exhaust system.

The plan was to make the “lines” of the exhaust flow with the bike and give it as much of a clean look as possible. I continued to work with the bike turned upside down as I had previously done when modifying the center stand. I am not sure how much I can say about the whole process other then it takes a lot of “looking” and “figuring” to make sure everything is just right.

I have included bonus pictures in this particular post which shows a major screw up on my part. I was able to dissect my mistake and fix it however the thoughts associated with my lack of planning still continue to haunt me. Anyway…look on and follow along as I eventually ended up with a completed exhaust system for the 65 Revive project.

Tacking down tubes

Laying out and tacking up both header pipes to ensure that they are both identical.

Collecter tacking

Tacking the collector to the 1.500″ outlet pipe which will help me line things up on the bike.

Collecter to headers 1

Starting to piece the header pipes to the collector assembly.

Tacked pipe take 1

Here is the “2” into 1 section all tacked up. I placed the collector in a particular spot in order to allow access to both oil drain plugs.

Ashamed and embarrassed

And here is my screw up. I cannot believe that I did this. For some reason I neglected to presicely place my collector assembly. I have no idea why I just “guessed” at its position. As you can see the exhasut angle under the bike look hideous.

Starting over

So here is attempt number 2. Good thing I only tacked the pipes together. This time I measured and clamped the collector assmebly in its proper position.

Collecter to headers 2

With the header pipes measured out and bolted in symmetrically and with the collector placed properly I began cutting pipe and fitting pipe in order to join the 2 sections together.

Tacked pipe take 2

It’s already looking better. Hopefully round 2 will prove to be successful.

Yeah Baby!

Way better, completely happy with the “angle on the dangle” on this one. The flow looks great. I like how the lines of the underside exhaust matches the angle of the seat frame.

Pipe final welding 1

With the exhaust tacked and tested it was time to perform the final TIG welds.

Pipe final welding 2

I back purged all my welds and they all worked out fine.

Muffler angle mock up

It was time to keep going with the elbow and angle required for mounting of the muffler. Here I used various supports to help hold the muffler in place so that I could stand back and get a good visual.

Completed 2 into 1

With the muffler angle figured out I cut and welded the remaining pipe. With the exception of a support bracket this is the final product.

Pipe install 2

Here is a shot of the completed and installed exhaust. I think the lines and shape worked out great. Don’t mind the orange elastic bands as they are only there to keep the exhaust flanges from sliding down the pipe while I was welding and installing.

Pipe install 1

And here is the final look. I still have yet to weld, or clamp, the mufller (I haven’t decided yet). I also need to install a bracket however this too has to wait for variuos reasons. My intent from the start was not to grind and brush the welds. I wanted to go for a raw and racey look so I think I am going to leave the welds exposed. I’ll let it sit for awhile and see how I feel.